Optimization of a Symmetric
Block Lanczos Basis
Generation Process

Osni A. Marques

CERFACS Report TR/PA/93/52

Optimization of a Symmetric Block Lanczos
Basis Generation Process

Osni A. Marques'

November 1993

Abstract

This report describes a set of experiments intended for the optimization of a block
Lanczos based algorithm, for the solution of large, sparse, symmetric generalized eigen-
problems. The algorithm examined is implemented with a shift-invert operator, using
a dynamic shift to slice the eigenvalue spectrum. However, such a shift strategy is
application dependent, since it is related to the number of solutions required, the com-
putational costs, the convergence rates and the approximate eigenvalue distribution
computed. Our objective is to examine the vector generation process, trying to speed
it up by using appropriate basic linear algebra kernels. The fundamentals of the algo-
rithm and the most important points in terms of computational effort are first revised.
Then, their performances are examined by a simulation of different problem dimensions
and block sizes. The experiments are performed on high performance workstations and
shared memory multiprocessors. Finally, some current applications are discussed, as
well as subjects for future work.

TCERFACS, Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, 42 av. G.
Coriolis, 31057 Toulouse Cedex, France, e-mail: marques@cerfacs.fr

1 Introduction

The determination of solutions of the equation
Az = ABz (1)

where A and B are n X n matrices, is a non null vector and A is a scalar, has long been
an important computation. In many applications, the above generalized eigenproblem has
a companion differential equation describing a physical phenomenon, so that the n pos-
sible solutions (A, z), eigenvalues A and eigenvectors z, are associated with fundamental
characteristics of such phenomena. In some applications from chemistry, for instance, they
represent basic configurations of molecules (hinge-bending motions); in structural engineer-
ing, dynamic properties of a given model (natural vibration frequencies and mode shapes);
and in nuclear power plants, neutron fluxes (if the dominant eigenvalue is greater than one
the behaviour of the plant is super-critical). See [4] and [29] for different cases and mean-
ings. Depending on the level of the discretization of a continuous problem or the precision
required for the results, A and B can reach dimensions of many thousands. Although in
practical analyses only a few eigenpairs (A, z) are taken into account, either in the extrem-
ities of the spectrum (lower or upper) or in an interval ({1, &z), their evaluation is usually a
time consuming task. Therefore, the development of new eigensolvers, or the improvement
of existing ones, has been the subject of continuous research.

Nowadays, Krylov subspaces based methods are widely used for treating eigenproblems
associated with large sparse matrices, since they can be shown to perform better than
vector iteration (inverse or direct), transformation methods (Jacobi, Householder or Givens)
or determinant search (see [14] and [25] for an explanation of these techniques). It should be
noted, however, that if an estimate for some eigenvectors is available, a subspace iteration
procedure may benefit from it. This situation occurs when eigenproblems are repeatedly
solved for slightly different matrices, as in a finite element modelling phase in structural
engineering.

The Lanczos algorithm is an efficient tool for finding a few solutions of large, sparse, sym-
metric eigenproblems. It can be presented in different ways, as can be seen in [14], [22]
and [25], but the governing idea is the generation of an orthonormal basis for a Krylov
subspace defined from a starting vector ¢; and a matrix A, i.e.,

IC(Avth) = Span(qlquh'“Aj_lql)- (2)

The projection of the original problem into this basis leads to a smaller one, involving a sym-
metric tridiagonal matrix, from which eigenvectors are recovered through a Rayleigh-Ritz
procedure. If the generalized eigenproblem (1) is considered, one could define Azy = Ay,
generating a basis with Ay, where Ay = L™'AL™T and z = L=Ty, providing B can be fac-
torized as LLT. Another possibility consists in defining A,z = fz, generating a basis with
Ay, where Ay = A7'B and @ = 1/, providing A is invertible. In this case A; is nonsym-
metric, but self-adjoint with respect to B, and its eigenvalues are real (this operator also
appears in the subspace iteration context) [25]. It is usually assumed (and observed) that
the Lanczos algorithm finds solutions at both ends of the spectrum. However, its conver-
gence pattern is strongly related to the eigenvalue distribution. In addition, experience
shows that convergence is faster to the small eigenvalues (i.e., their reciprocals) when the

basis is generated with the operator A;. On the other hand, a spectral transformation can
be applied, in which A is replaced by A, = A — 0B, for a real o, and the algorithm will
converge to solutions around o, in a modified coordinate system. As originally proposed
by Ericsson and Ruhe [9], the spectral transformation was implemented using the operator
Ag, but Nour-Omid et al. [23] showed that is preferable to use A;. Actually, both operators
are not explicitly formed, but B is often semidefinite and the eigenvectors of A; are directly
related to those of the original problem. Still, with an adequate o, clustered eigenvalues are
mapped into A; in a different way (i.e., A = ¢ + 1/6), leading to better convergence rates.

The Lanczos algorithm can be also applied to the solution of nonsymmetric eigenprob-
lems through the generation of two sequences of orthonormal vectors (or a biorthogonal
procedure, for A and AT), which project the original problem into an unsymmetric tridi-
agonal matrix. Rajakumar and Rogers [28], for instance, applied the technique to the
solution of a fluid-structure interaction problem. Moreover, Ye [32] developed a conver-
gence analysis, defining approximation bounds for the computed eigenpairs (also suitable
for the symmetric case). However, a zero scalar product of two non null vectors can be
obtained by the biorthogonal strategy, halting the basis generation process. Although Fre-
und et al. [10, 12, 11] proposed a “look-ahead” scheme for avoiding such a breakdown, the
Arnoldi algorithm has been preferred for the solution of nonsymmetric eigenproblems, since
it generates only one sequence of vectors and is thus stable. In this case, the projection of
the original problem into the basis is represented by an upper Hessenberg matrix. Bracon-
nier [3], and Godet-Thobie [13], for instance, describe an Arnoldi based implementation
improved with Tchebyshev polynomial accelerators and an eigenvector deflation method.
On the other hand, Sorensen [31] proposes an iterative Arnoldi procedure, which tries to
find an invariant subspace through the implicit application of polynomial filters.

Different versions of the symmetric Lanczos have been suggested and a comprehensive one
is described by Nour-Omid in [22]. The first experiments with the algorithm on a vector
computer were possibly carried out by Parlett et al. [26], followed by Jones and Patrick [17,
18], who developed a code for shared memory multiprocessors. Bostic and Fulton [2] adopted
a different approach, using a spectral transformation scheme with a different ¢ on each
processor of a parallel computer. Within this approach, different processors may compute
the same solutions if their ¢ are not sufficiently separated, and some expertise has to be
used to identify such solutions. All these aforementioned implementations are based on the
addition of a new vector into the basis at each step. Another proposed variant is the s-step
procedure [5, 20, 19], in which s steps of the basic Lanczos are performed at the same time,
starting with a subspace defined as span(q;, Aqi, A%q;...A*"1¢;). The orthogonality among
the generated vectors is established by factors computed through 3s — 1 systems of linear
equations of order s. Although this variant requires additional operations, it improves data
locality and has interesting parallel properties. It should be noted, however, that the s-step
terminology is also used, in a different context, to refer to an iterative fashion of computing
selected eigenvalues through the Lanczos algorithm [14].

Block versions of the Lanczos algorithm have been also proposed [15, 16], aiming at a
better performance when there are multiple eigenvalues. This is related to the fact that the
basic Lanczos algorithm produces only unreduced tridiagonal matrices, and the eigenvalues
of such matrices are distinct. In a block method, a basis is generated from p orthogonal

starting vectors, @1 = [q?) qgl) qz()l)], for a block Krylov subspace defined as

K(A,Q1,7) = span(Q1, AQ1,...A71Qy), (3)

so that the projection of the original problem into the basis is given by a block symmetric
tridiagonal matrix. Still, A can be replaced by either Az or As, and it can be shown that
the overall convergence pattern improves with increasing p [14]. Nevertheless, it is often
suggested that the block size should be specified as following [24]:

p < m, where m is the number of required eigenpairs;

p > 6, for structural engineering analysis problems with rigid body motions
(there is a similar situation in chemistry applications);

p > k, where k is the largest multiplicity of any sought eigenvalue
(which is normally unknown in advance).

In addition, the application of A on p vectors should compensate for the overhead of re-
trieving it, since A can be stored in a way that profits from its pattern (sparse storage, for
instance), or even stored in a slow access memory. The computational cost for a block-step
is also more expensive than the one for a single-step, and some ratio between such costs
could be considered for defining a maximum p or a default, when no information about the
problem to be solved is available. Therefore, an optimal block size depends on many factors,
possibly including the computer architecture, and the determination of a p that would lead
to consistent performance on all aplications is not feasible.

This report describes some experiments intended for the improvement of a block Lanczos
based algorithm, for the solution of large, sparse, symmetric generalized eigenproblems.
The technique considered is implemented with a shift-invert operator, with a dynamic shift
selection, following ideas proposed by Grimes et al. [16]. A dynamic shift is useful when the
eigenvalue distribution is difficult (clustered, for instance), many solutions are required, or
the continuation of a given run is costly when compared with the generation of a new A,. In
this case, it would be preferable to restart, thus modifying the convergence rate. Then, the
eigenproblem might be solved by pieces, based on the spectrum that the Lanczos algorithm
approximates as the basis sizes increase. However, since the shift strategy is application
dependent, the approach adopted in this work focuses on good implementations of the
vector generation process. The application of A on p vectors is not discussed here, since it
is influenced by the pattern of the matrices and in many cases dominates the computational
costs. The objective is to examine how efficiently the vectors can be generated for different
values of p, using different levels of BLAS kernels, which are currently available in almost all
computer scientific libraries. In the following sections, the block Lanczos idea and related
shortcomings are briefly revised, the points for possible enhancements are identified, and
some simulations are locally performed with different problem dimensions and block sizes.
The target machines are high performance workstations SUN 10/41 and IBM Risc 6000/950,
and shared memory multiprocessors Convex €220, Alliant FX /80, CRAY 2 and CRAY C90.
Finally, some current applications are discussed, as well as subjects for future work.

Table 1: Block Lanczos Algorithm

set Qg =0and By =0
set Q1 # 0 so that QT BQ, =1
define ¢ and factorize A, = A—ocB = LDILT

For j=1,2,...
a) solve (LDLT)R; = BQ;
b) Rj — R; — Q;-1B]
c)Aj — Q?BRj
d) Rj = Rj — QjA;
e) factorize R; : R; = Qj+1Bj+1, Q%IBQ]'H =1

2 Block Lanczos Algorithm Fundamentals

The block Lanczos basis generation strategy, for eigenproblem (1), transformed into
A;x = Oz, is summarized in Table 1. As can be seen in that table, the basis is constructed
from a rank p starting block @)1, possibly defined with random generated columns. Basically,
at each step, a simultaneous inverse iteration on the product B(); leads to the “residual”
R;, which is orthogonalized against the two previous blocks, ;_1 and ¢ ;. The factoriza-
tion of the residual results in the next set of p B-orthogonal vectors, ;41. Thus, ¢); and
R; are n X p matrices, B; is p X p upper triangular

[Big Bz o Bip)
0

Baa - Bap
B] =) (4)
. 0 0 ... Bpp |
A; is pxp, defined as
Q11 Q12 ... Qip
Qg1 Q29 ... Qzp
A = : (5)
L Gp1 Qp2 .. Qpp |

and one can write (since);_1 and @; are orthogonal)

Rj:Qj-HBj.H :A;IBQ]'—Q]'A]'—Q]'_le. (6)

After j steps the blocks of vectors generated can be arranged as (see [14], [22] and [25] for
more details)

Q=@ Q2 .. Qj] (7)
satisfying
0TBQ; =1 (8)
so that
Q] BA;'BQ; =T, (9)
where))
A, BT
B, A, BI
Tj: Bg A3 . (10)
T
B;
L Bi Aj |

Therefore, the projection of the eigenproblem (1) into the basis defined by relation (7) is
the symmetric block tridiagonal matrix 7;, with an approximate solution (A;, ;) given by

: 1
A = — 11
o+ b, (11)
and
T; = sti (12)
with (6;, s;) satisfying
Tis; = s;6;. (13)

This reduced eigenproblem can be solved by means of Givens rotations, for example, and
T Bi; = 1 providing s!s; = 1. The residual of (A;, #;) can be estimated a priori, through

| Avi — 6| = |Qi(T — 6::) + RiEjsi|| = | RiEjsil] = [Byast”| = 87 (14)

(2)

where [| . || is an Euclidian norm with respect to B, £; = [0 0 ... I], and s}’ stores

the bottom p elements of s;. Then, the monitoring of the backward error ﬁj(z)/HAtH allows
the counting of the converged solutions, by comparing with a specified tolerance, and the
finalization of a given run.

The practical implementation of a Lanczos eigensolver requires some care and this work
gives a general picture of the situation for the block strategy, see [16] and [25] for details
(it should be noted that for p = 1 the above formulation reduces to the basic Lanczos
scheme). To begin with, the maximum allowable j can be reached without the convergence
of all desired eigensolutions. Then, a restart can be performed, taking for ¢); some linear
combination of current Ritz vectors & with backward errors not satisfying the specified
tolerance. A new o can be possibly used, probably resulting in an indefinite matrix A,,
whose LDILT factorization should be performed with some kind of pivotingt. However, in
this case, the errors introduced by an ill-conditioned system will have strong eigenvector

Tt should be noted that the inertia of A, the number of eigenvalues of A, less, equal or greater than
zero, can be recovered from D.

components, as shown by Parlett [25, pages 63—-65]. The situation can be also monitored
using information provided by the eigensolver, i.e., the approximate spectrum allows the
estimation of the conditioning of A,. On the other hand, one should avoid taking ¢ close
to an eigenvalue because the factors L and D might not exist.

Concerning the vector generation process, A; is symmetric in theory, but can slightly deviate
from symmetry due to roundoff errors. This is taken into account in order to assure a
strong level of orthogonality between (); and R;, in operations ¢ and d in Table 1. After
this orthogonalization, only its upper triangle is preserved, since this simplification does
not influence the following computations. Then, at the end of each step, R; is factorized
as ()j+1B;+1 using a modified Gram-Schimdt orthogonalization strategy [1, 6, 21]. This
factorization consists basically in the normalization of a given column and its purging from
the remaining ones (to the right). However, one sweep on the p columns may be not enough
to produce Q%IBQ]'H = I, so that the factorization should be performed in an iterative
fashion, repeated up to p times if required. Some perturbation can be also introduced at
this point, for the columns of R; are updated, and an additional orthogonalization is usually
performed between (); and ();41. Because of the inverse iteration in phase a, for example,
the columns of R; tend to converge to the eigenvector closest to o. However, a rank deficient
block can be identified by the conditioning of the final B;;,. Finally, a loss of orthogonality
among the vectors of the basis Q; is generally observed after some steps. It is caused by the
introduction of roundoff errors in relation (6). Paige [25] showed that the departure from
orthogonality is also related to the convergence of a pair (;\27 #;) and, therefore, with the
eigenvalue distribution of the associated problem. Once orthogonality is lost, property (8) is
no longer satisfied, and redundant copies of eigenpairs emerge. As an immediate option to
avoid this, one could apply a full reorthogonalization, i.e., orthogonalize R; against all 7 —1
previous blocks. However, such a scheme would strongly increase the number of operations
at each step. On the other hand, some preventive measures based on potentially dangerous
vectors can be used to keep the orthogonality within a certain level [27, 30], namely:

Selective Orthogonalization. The objective is to keep R; orthogonal to any previously
converged Z;. Then, whenever the backward error satisfies a specified tolerance the
corresponding Z; is calculated and stored. In the following steps, the residual block
R; is orthogonalized- against Z; whenever indicated by the norm T](QI = 2'BQ;41 |-

The tolerance for ﬁj(-z)/HAtH is usually set to /¢, where ||A|| can be estimated through

the computed eigenvalue distribution and e is the relative machine precision.

Partial Reorthogonalization. The objective is to keep R; orthogonal to all @;, 7 < j.
The level of orthogonality among the blocks of vectors is then measured by
Nij41 = || QT BQ ;41 ||, and whenever this norm is greater than a given threshold,
() j+1 is orthogonalized against the corresponding ();.

It should be noted that the aforementioned norms are not explicitly computed, since they
can be estimated and updated from the norms of A; and Bj;, applied to relation (6). A

(1)

reasonable strategy is to reorthogonalize whenever ijH or 7; j4+1 are greater than /e np.
However, it is likely that the effectiveness of the selective orthogonalization or the partial
reorthogonalization depends on the application and such strategies are sometimes used to-
gether [22]. Actually, in the present implementation, eigenvectors are computed only at

the end of a given run and selective orthogonalization will be performed only if a restart
is required. Still, a modified partial reorthogonalization strategy is used [16, 22], in the
sense that whenever 7; ;41 reaches the threshold all the previous (); are taken into account.
Therefore, instead of partial reorthogonalizations at possibly close steps, a full reorthogo-
nalization is performed at some steps. Finally, for both orthogonalization schemes, both
();j+1 and @); are orthogonalized, since they are needed in the computation of ();42. Such a
strategy should assure a more adequate level of orthogonality among the subsequent blocks.

3 The Code Sections Examined

The basic approach for optimization of a given program is to detect the time-consuming
parts and improve the corresponding code sections one by one. In this case, the following
phases of restructuring could be applied [8]: ¢) use of the best set of compiler options,
it) modification of the sequential source code, and 7ii) improvement of the parallel code
after it has been transformed by the compiler. It can be verified that the most important
time consuming parts in the block Lanczos algorithm, in descending order, are

1. The factorization of A, and its repeated application to p vectors.

2. Orthogonalizations within and among blocks of Lanczos vectors, which involve oper-
ations b to e in Table 1, and also the partial reorthogonalization strategy.

3. Orthogonalizations among Ritz vectors and blocks of Lanczos vectors, which corre-
spond to the selective orthogonalization strategy.

4. Evaluation of the reduced eigenproblem associated with the block tridiagonal matrix
and the computation of Ritz vectors.

The p solutions using A, is not discussed here, since it is influenced by the pattern of
the matrices and in many cases dominates the computational costs. Also, the cost for the
solution of the reduced eigenproblem depends on p and on the number of steps, so that it
varies independently of n and is almost negligible for very large applications. Therefore,
the purpose is to speed up the second and third sets of operations listed above, as well as
the computation of Ritz vectors.

The Lanczos algorithm is dominated by vector-scalar and vector-vector products, which
can be expressed by matrix-vector and matrix-matrix products in the block case. Using
the Basic Linear Algebra Subroutines (BLAS) notation, those operations are referred to as
Level 1, 2 and 3, respectively. Then, one could employ a combination of SCAL, DOT,
_AXPY, _GEMV, _GER and _.GEMM to perform the computations in phases b to e, shown
in Table 2. Such kernels are nowadays available in almost all computer scientific libraries
and this helps in devising portable codes. Moreover, any restructuring could be performed in
independent and specific code sections. On a multiprocessor machine, parallelization could
be achieved inside the kernels or at loops with embedded kernels. However, load balance
problems would occur for block sizes which are not multiples of the number of processors.
On the other hand, for the kind of matrices involved in the block Lanczos basis generation

process, where n > p, it is not evident that a given level of BLAS would perform in the
same way on different machines. In order to examine the impact of n, p and the BLAS level
on different architectures, the following arrangements have been tested$:

phase b, orthogonalization of R; against Q;_1 ((p+ 1)pn flops):

level 1: _AXPY embedded in two loops (one for generating the column of R;, and the
other for generating the column of ¢);_; and the element of B?);

level 2: _.GEMYV embedded in one loop (for generating the column of B;F);

level 3: no specific kernel available to profit from the pattern of B?.

phase ¢, computation of A; (p*n flops):

level 1: _-DOT embedded in two loops (one for generating the column of @;, and the

other for generating the column of the array storing the product BR;);
level 2: . GEMYV embedded in one loop (for generating the column of the array storing

the product BR;);
level 3: . GEMM

phase d, orthogonalization of R; against Q; (2p*n flops):

level 1: _AXPY embedded in two loops (one for generating the column of R;, and the
other for generating the column of ¢); and the element of B]T);

level 2: _.GEMYV embedded in one loop (for generating the column of A;);

level 3: .GEMM

(5p+1)

phase e, factorization of R; (=5~ pn flops):

loop on all columns of R;, _DOT and _-SCAL to normalize one column each time and¥

level 1: _DOT and _AXPY embedded in one loop (for purging the normalized column

from each column to its right);
level 2: .GEMYV and _GER (for computing the orthogonalization factors and purging

using an outer vector product);
level 3: not applicable, since this phase is basically a matrix-vector operation.

selective orthogonalization (5pn flops):

level 1: _DOT and _AXPY embedded in one loop (for purging a Ritz vector from each
column of R;);
level 2: .GEMV and _GER (for computing the orthogonalization factors and purging

using an outer vector product);
level 3: not applicable, since this phase is basically a matrix-vector operation.

$The partial reorthogonalization strategy is a combination of phases ¢ and d, and the computation of
Ritz vectors is similar to the operations in phase d.

This phase requires the product BR;, which is updated in the same way as R;. Therefore, R; is
transformed to Q;4+1 and BR; to BQ;4+1 to be used in phase (a) of the next step.

Table 2: Simulation overview for p = 6 (level shown for best performance)

phase Sun 10/41 IBM 950 Convex C220 Alliant FX/80 CRAY 2 CRAY C90

(D) 2 1 2 2 2 2
(c) 20r3 3 1 3 1 1
(d) 20r3 3 3 3 3 20r3
e 2 1 1 1 1 1
5.0. 1or2 2 1 2 1 1

The performance of the arrangements were examined on the super-scalar workstations SUN
10/41 and IBM Risc 6000/950, and shared memory multiprocessors Convex €220, Alliant
FX/80, CRAY 2 and CRAY C90. For the CRAYs, n was taken between 30000 and 240000
(with increments of 30000), and for the others between 10000 and 100000 (with increments
of 10000). The values of p were taken between 1 and 8, which are reasonable block sizes
for current applications. Larger values usually require additional effort in the orthogonal-
izations and in the Gram-Schmidt factorization. It should be noted that the performances
for p = 1 are not the best that can be obtained for the basic Lanczos algorithm, since even
in this case the present implementation has a block structure. The matrices ¢ and R used
in the experiments were generated with random numbers and the results are discussed in
Appendix A. Anyhow, an overview of the results for the particular case p = 6 is given in
Table 2, where s.o. indicates the selective orthogonalization.

4 Current Applications and Future Work

The global performance of the code, for all level implementations and best BLAS combi-
nations, is currently being examined using several large problems, which are described in
Table 3. The first problem belongs to the Harwell-Boeing matrix collection [7] and is asso-
clated with a finite element analysis of a skyscraper. It is interesting because the smallest
eigenvalue (equal to zero) has multiplicity 118. The other problems are also related to finite
element analyses and were kindly provided by D. Sorensen.

Another problem being examined comes from a molecular mechanics analysis, where A
corresponds to the product M~Y2V2EM =12 being E the potential energy, and M the
matrix of the atomic masses (diagonal). Therefore, considering the eigenproblem (1), B is an
identity matrix. However, a generalized eigenproblem formulation allows the consideration
of the energy in terms of internal coordinates and the analysis of very large molecules. The
characteristics of some cases are given in Table 4, where nz corresponds to the number of
non zeros (upper triangle), and bw to the semibandwidth of the matrix. The dimension of
each problem is three times the number of atoms. The first 16 eigenvalues of arabinose,
) and the product 27 Az
for each eigenvector. Such products have been computed only to verify the accuracy of the
algorithm for this kind of application. The first 6 eigenvalues have no practical interest
because they are associated with free (zero energy) molecular motions.

for instance, are given in Table 5, as well as the related norms ﬁ](Z

10

Table 3: Test cases characteristics

problem n characteristics
besstk25 15439 76 storey skyscraper
CT20 52329 auto engine model
NASAPWT 217918 wind tunel model
MN12 264002 automobile model

Table 4: Molecular dynamics applications

case n nz bw
crambine 1188 134217 504
lysozyme 3795 490602 1137
arabinose 8592 1161360 1395

Table 5: Figenvalues of arabinose

vector A 2T Az ﬁ;l)
1 -4.0968E-02 -4.0968E-02 1.1176E-15
2 -3.1209E-04 -3.1208E-04 2.9100E-15
3 -2.4069E-06 -2.3838E-06 4.2260E-15
4 -1.4992E-06 -1.4838E-06 2.5060E-15
5 1.1459E-07 1.2960E-07 3.4310E-15
6 1.5875E-06 1.6082E-06 3.7401E-15
7 2.0016E-06 2.0206E-06 1.5258E-15
8 6.6040E-06 6.6204E-06 2.8386E-15
9 4.0125E-04 4.0126E-04 3.4032E-15
10 8.1116E-04 8.1117E-04 1.8453E-15
11 1.1388E-03 1.1388E-03 1.6895E-15
12 1.4323E-03 1.4323E-03 5.5481E-21
13 1.5169E-03 1.5169E-03 1.8863E-15
14 2.2458E-03 2.2459E-03 6.0025E-15
15 2.9136E-03 2.9136E-03 1.0753E-10
16 3.2549E-03 3.2549E-03 1.0234E-09

11

The local experiments with all phases of the block Lanczos basis generation process indicated
that different performances are obtained with the BLAS levels, depending on n and p.
Therefore, the next objective is to choose automatically the most appropriate BLAS level
for each operation on a given computer at run time. It should be noted that the operations
are nested in a loop and any performance improvement would be multiplied by the number
of Lanczos steps. However, on supercomputers like the CRAYs a significant variation is
found for some combinations of n and p and additional experiments (using fixed leading
array dimensions, for example) need to be performed in order to obtain a more regular
behaviour.

On the other hand, the generation of large bases (long runs) requires a large storage space
for the vectors (or more I/O operations if the vectors do not fit into fast access memory) and
more partial reorthogonalizations or selective orthogonalizations. Therefore, it appears that
more efficient ways of restarting and spectrum slicing should be also investigated, based on
the information that the algorithm computes in each run.

Another very important point to be studied is the factorization of A, and its repeated
application to p vectors. For specific problems, different decomposition strategies could be
possibly applied, and even an iterative solver, although the inertia information would not
be available.

Acknowledgment. The author would like to thank D. Sorensen, Rice University, Houston,
USA, for having provided large test problems, and Yves-Henri Sanejouand, IRSAMC, Paul
Sabatier University, Toulouse, France, for having provided eigenproblems from molecular
mechanics analyses.

References
[1] A. Bjorck. Numerics of Gram-Schmidt Orthogonalization. Linear Algebra and Its
Applications, 197,198:297-316, 1994.

[2] S. W. Bostic and R. E. Fulton. Implementation of the Lanczos Method for Structural
Vibration Analysis on a Parallel Computer. Computers & Structures, 25:395-403, 1987.

[3] T. Braconnier. The Arnoldi-Tchebycheff Algorithm for Solving Large Symmetric Eigen-
problems. Technical Report TR/PA/93/25, CERFACS, Toulouse, France, 1993.

[4] F. Chatelin. Valeurs Propres de Matrices. Masson, Paris, France, 1988.

[5] A. T. Chronopoulos and C. W. Gear. s-step Iterative Methods for Symmetric Linear
Systems. J. Comp. and Applied Math., 25:153-168, 1989.

[6] J. W. Daniel, W. B. Cragg, L.. Kaufman, and G. H. Stewart. Reorthogonalization and
Stable Algorithms for Updating the Gram-Schmidt QR Factorization. Math. of Comp.,
30:772-795, 1976.

[7] 1. S. Duff, R. G. Grimes, and J. G. Lewis. User’s Guide for the Harwell-Boeing Sparse
Matrix Collection (Release I). Technical Report TR/PA/92/86, CERFACS, Toulouse,
France, 1992.

12

[8] R. Eigenmann. Towards a Methodology of Optimizing Programs for High Perfor-
mance Computers. Technical Report 1178, CSRD, University of Illinois at Urbana-
Champaign, Urbana-Champaign, USA, 1992.

[9] T. Ericsson and A. Ruhe. The Spectral Transformation Lanczos Method for the Nu-
merical Solution of Large Sparse Generalized Symmetric Eigenvalue Problems. Math-
ematics of Computation, 35:1251-1268, 1980.

[10] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. An Implementation of the
Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices, Part I. Technical Report

90.45, RTACS, NASA Ames Research Center, Columbia, USA, 1990.

[11] R. W. Freund, M. H. Gutknecht, and N. M. Natchigal. An Implementation of the
Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices. SIAM J. Sci. Comput.,
14:137-158, 1993.

[12] R. W. Freund and N. M. Nachtigal. An Implementation of the Look-Ahead Lanczos
Algorithm for Non-Hermitian Matrices, Part II. Technical Report 90.46, RTACS, NASA
Ames Research Center, Columbia, USA, 1990.

[13] S. Godet-Thobie. Valeurs Propres de Matrices Fortement Non Normales en Grande
Dimension. Technical Report TH/PA/93/06, CERFACS, Toulouse, France, 1993.

[14] G. H. Golub and C. F. Van Loan. Matriz Computations. The Johns Hopkins University
Press, Baltimore, USA, third edition, 1996.

[15] G. H. Golub and R. Underwood. The Block Lanczos Method for Computing FEigenval-
ues. In J. R. Rice, editor, Mathematical Sotware I, pages 361-377. Academic Press,
Inc., 1977.

[16] R. G. Grimes, J. G. Lewis, and H. D. Simon. A Shifted Block Lanczos Algorithm
for Solving Sparse Symmetric Eigenvalue Problems. Technical Report RNR-91-012,
Boeing Computer Services, Seattle, USA, 1991.

[17] M. T. Jones and M. L. Patrick. The Lanczos Algorithm for the Generalized Symmetric
Eigenproblem on Shared-Memory Architectures. Technical Report MCS-P182-0990,
Argonne National Laboratory, Argonne, USA, 1990.

[18] M. T. Jones and M. L. Patrick. The Use of Lanczos’s Method to Solve the Large Gen-
eralized Symmetric Figenvalue Problem in Parallel. Technical Report 90-48, ICASE,
Hampton, USA, 1990.

[19] S. Kim and A. T. Chronopoulos. A Class of Lanczos-Like Algorithms Implemented on
Parallel Computers. Technical Report TR 89-49, Computer Science Dept., University
of Minnesota, Minneapolis, USA, 1989.

[20] S. Kim and A. T. Chronopoulos. s-step Lanczos and Arnoldi Methods on Parallel Com-
puters. Technical Report TR 89-83, Computer Science Dept., University of Minnesota,
Minneapolis, USA, 1989.

[21] J. Malard. Block Solvers for Dense Linear Systems on Local Memory Multiprocessors.
PhD thesis, School of Computer Science, McGill University, Montreal, Canada, 1992.

13

[22] B. Nour-Omid. The Lanczos Algorithm for Solution of Large Generalized Figenprob-
lem. In T. J. R. Hughes, editor, The Finite Element Method, pages 582-630, Englewood
Cliffs, USA, 1987. Prentice Hall International Editions.

[23] B. Nour-Omid, B. N. Parlett, T. Ericsson, and P. S. Jensen. How to Implement the
Spectral Transformation. Mathematics of Computation, 48:663-673, 1987.

[24] B. N. Parlett. Notes on Lanczos Algorithms for a SIAM Short Course on Large-
Scale and Parallel Matrix Computations in Control, Systems and Signal Processing,
November 1990.

[25] B. N. Parlett. The Symmetric Figenvalue Problem. SIAM (Classics in Applied Math-
ematics), Philadelphia, USA, 1998.

[26] B. N. Parlett, B. Nour-Omid, and J. Natvig. Implementation of Lanczos Algorithms

on Vectors Computers. In R. W. Numrich, editor, Supercomputers Applications, pages
1-17. Plenum Press, 1985.

[27] B. N. Parlett and D. S. Scott. The Lanczos Algorithm with Selective Orthogonalization.
Mathematics of Computation, 33:217-238, 1979.

[28] C. Rajakumar and C. R. Rogers. The Lanczos Algorithm Applied to Unsymmetric
Generalized Eigenvalue Problem. [Int. J. for Numer. Meth. in Eng., 32:1009-1026,
1991.

[29] Y. Saad. Numerical Methods for Large Figenvalue Problems. Manchester University
Press, Manchester, England, 1992.

[30] H. D. Simon. The Lanczos Algorithm with Partial Reorthogonalization. Mathematics
of Computation, 42:115-142, 1984.

[31] D. C. Sorensen. Implicit Application of Polynomial Filters in a k-step Arnoldi Method.
STAM J. Matriz Anal. Appl., 13:357-385, 1992.

[32] Q. Ye. A Convergence Analysis for Nonsymmetric Lanczos Algorithms. Mathematics
of Computation, 56:677-691, 1991.

14

A Simulation Details

This appendix shows some instances of the computational performances for the arrange-
ments described in Section 3. The performance (time) is measured using different values of
n and is expressed in seconds. A dashed line indicates results for Level 1, a dash-dotted line
for Level 2, and a solid line for Level 3 BLAS arrangements. Most of the pictures correspond
to p = 6, in order to provide a general view. If p = 1 the Level 1 is recommended for all
cases, since it has been verified that the Levels 2 and 3 can lead to very poor performances.
Machine specific comments are given in the following paragraphs.

Sun 10/41. The computational performances on the Sun 10/41 are given in terms of
user CPU time. It should be noted that no specific BLAS library is available on the
Sun 10/41. Therefore, the library employed was generated with the BLAS source code
using only the -O optimization option provided by the compiler. An important oscillation
on the performance has been noticed for p < 3 in all computational phases, probably
related to data management and the SUN clock resolution. The Level 1 implementation is
therefore recommended in such cases. An improvement can be obtained with the Level 2
implementation for the operations in phases b and e (but in a smaller proportion), as shown
in Figs. 1 and 4. However, the situation is also typical for other values of the block size.
On the other hand, the performances of the Levels 2 and 3 implementations are almost
the same for phases ¢ and d, as indicated in Figs. 2 and 3. For those phases, the asterisk
represents the performance of an experimental Level 3 tuned BLAS implementation. As can
be seen, a significant improvement can be obtained in phase ¢ (Fig. 2), which encourages
the development of the tuned version to deal with odd values of p in phase d (Fig. 3).
Concerning the selective orthogonalization, the performances are fundamentally the same
for Levels 1 and 2, and are not plotted.

IBM Risc 6000/950. The computational performances on the IBM Risc 6000/950 are
given in terms of user plus system CPU time. Similarly to the Sun 10/41, an important
oscillation has been noticed for p < 3 in all computational phases, and the Level 1 implemen-
tation is thus recommended in such cases. The performances of the Level 1 implementations
are generally better in phases b and e, as shown in Figs. 5 and 8, and also for the selective
orthogonalization. However, as the block size increases (p > 6), the performance of the
Level 2 was noticed to be very similar to that of the Level 1, and sometimes even better for
the selective orthogonalization. On the other hand, a significant improvement is obtained
with the Level 3 implementations in phases ¢ and d, as shown in Figs. 6 and 7. The
situation is typical for other values of the block size.

Convex C220. The computational performances on the Convex €220 (with one proces-
sor) are given in terms of user CPU time. The vector architecture and the Convex scientific
library favour the Level 1 implementations for phases c, e and the selective orthogonaliza-
tion, as shown in Figs. 10, 12 and 13. On the other hand, the Level 2 implementation leads
to a significant improvement in phase b, as can be seen in Fig. 9. It should be noted that

15

even in phase d, where the Level 3 implementation is generally more efficient, the Level 2
also performs well, as shown in Fig. 11. This behaviour stands for other values of p.

Alliant FX/80. The computational performances on the Alliant F'X/80 are given in
terms of user CPU time, using 4 and 8 processors. On this machine, the higher level
implementations improve the computational performances for phases b, ¢ and d, as can be
seen in Figs. 14, 15 and 16. On the other hand, the Level 1 is more efficient in phase e, as
shown in Fig. 17. Concerning the selective orthogonalization, the Level 1 is more efficient
for p < 6, otherwise the Level 2 should be used. It has been noticed that the use of a
different number of processors can also influence the performances. A very good speed-up
is obtained with the Level 1 implementation, as can be verified in Fig. 15, for example, in
spite of the better performance obtained with the Level 3. It seems that larger values of n
and p are required to obtain similar speed-up’s with the higher level implementations.

CRAY 2. The computational performances on the CRAY 2 are given in terms of real-
time clock values, for 2 and 4 processors, running in a stand alone mode (the benchmark
queue). The vector architecture and the library available on the CRAY 2 favour the Level
1 implementation in phases c, e and selective orthogonalization, as indicated in Figs. 19,
21 and 22. On the other hand, the higher level implementations are more appropriate
for the computations in phases b and d, as shown in Figs. 18 and 20. The peaks in
some plots probably indicate that the corresponding implementantions are sensitive to data
management. In addition, no speed-up has been obtained for all implementations and
phases, which means that specific tuned kernels should be developed for the CRAY 2.

CRAY C90. The computational performances on the CRAY C90 are given in terms of
real-time clock values, for 2 and 4 processors, running in a stand alone mode (the benchmark
queue). Similarly to the CRAY 2, the vector architecture and the library available favour
the Level 1 implementation in phases c, e and selective orthogonalization, as depicted in
Figs. 24 and 26 and 27. On the other hand, the higher level implementations are adequate
for the computations in phases b and d, as shown in Figs. 23 and 25. However, it has been
verified that the performances switch between the Levels 2 and 3 depending on the block
size an on the number of processors, but a very good speed-up has been obtained in some
cases, as can be seen for example in Fig. 24.

16

time

1.4 T T T T T

0.8f -

time
\
\

0.6 e
0.4f Py

0.2r - -

p=6
1.4 : : ; ; ; ; ; ;
1.2F //:”/f
1k o i
0.8f R |
© %
E e
0.6F s |
/// *
// *
0.4f P * i
Py *
s *
P *
02 - « |
F *
1 2 3 4 5 6 7 8 9 10
n ><104
Figure 2: SUN 10/41, comp. of A;
p=5 p=6
; ; ; ; 2.4 ; ; ; ; ; ; ; ;
21t A
1.8- /,/f |
150 2 |
] ///
Elar . 1
///// *
0.9r - * B
= *
o *
0.6F L « f
/// *
03F =~ * 4
P
1 2 3 4 5 6 7 8 9 10
n ><104

Figure 3: SUN 10/41, orthog.

17

of R; against ();

3.5

2.5r

time

1.5r

0.5r

0.3

0.25

0.2

time
o
[
o

0.1

0.05

0.3

0.25

0.2

time
o
[
o

Figure 6: IBM Risc 6000/950, comp. of A;

time

0.7 T T T T T T

0.6r

time
\
\

0.3r -
0.2r -

0.1r .~

Figure 8: IBM Risc 6000/950, factor. of R;

0.3 T T T T T T

0.251

time
o
[
[
T
\

0.1r P -

Figure 9: Convex €220 (1 proc.), orthog.

19

of R; against ();_1

1.6 T T T T T T T T

1.4F o]

1.2F - q

p=6
05 ; ; ; ‘ ‘ ‘ ‘ ‘
0.4t e i
03f e 8
o ///
E Pid
0.2t 7 -
0.1f 7 - 1
1 2 3 4 5 6 7 8 9 10
n 4

Figure 11: Convex €220 (1 proc.), orthog. of R; against @;

1.4 T T T T T T T T

1.2+ - 4

time
\

0.6F . -7

0.4r -7 -7 1

0.2r . - q

Figure 12: Convex €220 (1 proc.), factor. of R;

20

0.8

0.7

0.6

time
I
D

0.4

0.35

0.3

0.25

time
o
N

0.15

0.1

0.05

Figure 13: Convex €220 (1 proc.), selectiv

p=6 (4 processors)

1.4

time

0.7

0.6

0.5

0.4

0.3

0.2

0.1

e orthogonalization

p=6 (8 processors)

Figure 14: Alliant (4 and 8 proc.), orthog. of R; against @;_1

p=6 (4 processors)

time

0.7

0.6

0.5

0.4

0.3

0.2

0.1

p=6 (8 processors)

x 10

Figure 15: Alliant (4 and 8 proc.), comp. of A;

21

1.4

1.2

0.8

time

T T T 1.2 T T T

\
\
time
o
[=))
T
\
\
L

Figure 16: Alliant (4 and 8 proc.), orthog. of R; against @;

p=6 (4 processors) p=6 (8 processors)

3 ‘ ‘ ‘ ‘ ‘ 24 ‘ ‘ ‘ ‘ ‘ ‘
2.1t A
25] ~
P 1.8¢ o -
2 7 -7 o -
e - 15F 7 -7
[} ,// 7 [} ,// ////
£15 = P 8 E12f . - .
Lo T 0.9t 7 -7 1
1 R 8 . -
CLeT 0.6 T 8
0.5 ol 1 PRt
e 03r .7 -~ 1
1 2 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
n x10° n x10°
Figure 17: Alliant (4 and 8 proc.), factor. of R;
p=6 (2 processors) p=6 (4 processors)
0.08 ‘ ‘ ‘ : ‘ ‘ 0.08 ‘ ‘ ‘ : ‘ ‘
0.07 e 0.07F et
0.06 7 . 0.06] 7 .
0.05 Pt . 0.051 7 .
o /// o -
£0.04 - o £0.04f 7 A
0.03 L7 T 8 0.03f e P 8
0.02 - =T g 0.02f prad e g
001k - 1 001F" -7 1
8. 06 0.9 12 15 18 21 2.4 83 06 0.9 12 15 18 21 2.4
n 5 n 5
x 10 x 10

Figure 18: CRAY 2 (2 and 4 proc.), orthog. of R; against @;_1

22

0.3

p=6 (2 processors)

time

p=6 (4 processors)

time

0.14

Figure 19:

p=6 (2 processors)

CRAY 2 (2 and 4 proc.), comp. of A;

0.081

time

p=6 (4 processors)

-7 0.121

time

Figure 20: CRAY 2 (2 and 4 proc.), orthog. of R;

2.1 2.4 8.3 0.6 0.9 1.2
x 10

0.3

0.21

time
°
[
o
T

0.1r

0.05-

p=6 (2 processors)

\
I
time
o
[
[

T

1.5 1.8 2.1 2.4
x 10

against @) ;

b 0.21

12 15 18

Figure 21:

p=6 (4 processors)

CRAY 2 (2 and 4 proc.), factor. of R;

23

p=6 (2 processors)

time

p=6 (4 processors)

time

0.09 ‘ ‘ : ‘ ‘ 0.09 ‘ ‘ : ‘ ‘
0.08F A 0.08F E
0.07t A 0.07t A

/
0.06 S 0.06 , 1
/ - -
0.05 PR 0.05 LT
@ -7 - @
E LTl E ot
~0.04r T 1 0.04 el 1
0.03F JPsotags - 0.03F et 1
0.02} o= . 0.02} 7T .
0017 4 001k~ 4
83 0.6 0.8 12 5 18 21 2.4 83 06 0.8 12 5 18 21 2.4
n x 10° n x 10°
Figure 22: CRAY 2 (2 and 4 proc.), selective orthogonalization
p=6 (2 processors) p=6 (4 processors)
0.018 ‘ ‘ ‘ : ‘ ‘ 0.018 ‘ ‘ ‘ : ‘ ‘
0.016 /’/ E 0.016 P
0.014f s . 1 0.014f . 1
0.012F 7 1 0.012F o . 1
0.01F ,// _-1 0.01F e ,

© P o) P

£ - - E L

~ 0.008F e e - 0.008F e :

0.006} ,// /,f’/ g 0.0061 /// s A0
oooaf .7 -7 . oooaf .7 e T .
0.002F -~ . o002f -7 .
83 0.6 0.8 12 5 18 21 2.4 83 06 0.8 12 5 18 21 2.4
n x 10° n x 10°
Figure 23: CRAY €90 (2 and 4 proc.), orthog. of R; against Q;_1
p=6 (2 processors) p=6 (4 processors)

0.16 ‘ ‘ ‘ : ‘ ‘ - 0.18 ‘ ‘ ‘ : ‘ ‘
0.14f , 7 0.16 g
0.14f a

Figure 24: CRAY C90 (2 and 4 proc.), comp. of A;

0.03

0.025

p=6 (2 processors)

p=6 (4 processors)
0.03 T T T T

0.025

Figure 27: CRAY C90 (2 and 4 proc.), selective orthogonalization

25

0.02 0.02
(] (]
£0.015 £0.015
0.01 0.01
0.005 0.005
8. 06 09 12 15 18 21 2.4 83 06 09 12 15 18 21 2.4
n x 10° n x 10°
Figure 25: CRAY C90 (2 and 4 proc.), orthog. of R; against @;
p=6 (2 processors) p=6 (4 processors)
0.14 ‘ ‘ ‘ : ‘ ‘ y 0.14 ‘ ‘ ‘ : ‘ ‘
, ,
B .
a 4
0.12 . 1 0.12 - 1
- ’ e ~.7
- - K4
0.1 - 4 1 0.1r 7 1
. ,
a 7
0.08 7 1 0.08 s 1
@ P @ -
£ - £ .
£ P E P
0.06 e g 0.06f e g
0.04 T 0.04" T i -]
002~ e . 0.02}-~ /,//'/ .
8. 06 09 12 15 18 21 2.4 83 06 09 12 15 18 21 2.4
n x 10° n x 10°
Figure 26: CRAY C90 (2 and 4 proc.), factor. of R;
p=6 (2 processors) p=6 (4 processors)
0.035 ‘ ‘ ‘ : ‘ ‘ 0.03 ‘ ‘ ‘ : ‘ ‘
1 /|
0.03 . 0.025¢ s
7 7/
P
0.025 7 1
s 0.02F = _ d
0.02 o E .
. g
(] v (] 7o 7/
£ - E0.015 S L i
0.015 e 1 s T _ -
. B E -
L - 0.01f / - f
0.01 - - 1 , -7
~ =7 / -7
0005 -~ -] 0.005—//,/ I]
8. 06 09 12 15 18 21 2.4 83 06 09 12 15 18 21 2.4
n x 10° n x 10°

